top of page
Feature article-npg.JPG
2022_Small Sci. Back cover.jpg
Selected Papers

[Neuromorphic and Memory applications] (*corresponding)

A learning-rate modulable and reliable TiOx memristor array for robust, fast, and accurate neuromorphic computing

J. Jang†, S. Gi†, I. Yeo, S. Choi, S. Jang, S. Ham, B. Lee* and G. Wang* 

Adv. Sci. 2201117 (2022) (†contributed equally to this work

Flexible neural network realized by the probabilistic SiOx memristive synaptic array for energy-efficient image learning

S. Choi, J. Jang, M. S. Kim, N.-D. Kim, J. Kwag and G. Wang*

Adv. Sci, 2104773 (2022))

Controllable SiOx Nanorod Memristive Neuron for Probabilistic Bayesian Inference

S. Choi, G. S. Kim, J. Yang, H. Cho, C.-Y. Kang and G. Wang*

Adv. Mater. 34, 2104598 (2022) 

Energy-efficient three-terminal SiOx memristor crossbar array enabled by vertical Si/graphene heterojunction barristor

S. Choi†, J.-W. Choi†, J. C. Kim, H. Y. Jeong, J. Shin, S. Jang, S. Ham, N.-D. Kim, and G. Wang*

Nano Energy, 84, 105947 (2021)

Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing

S. Choi, J. Yang, and G. Wang* 

Adv. Mater. 20044659 (2020) (*Invited Progress Report)

Artificially Intelligent Tactile Ferroelectric Skin

K. Lee†, S. Jang†, K. L. Kim, M. Koo, C. Park, S. Lee, J. Lee, G. Wang* and C. Park*

Adv. Sci. 7, 2001662 (2020)

One-dimensional organic artificial multi-synapses enabling electronic-textile neural network for wearable neuromorphic applications

S. Ham†, M. Kang†, S. Jang†, J. Jang, S. Choi, T.-W. Kim* and G. Wang* 

Science Adv. 6 : eaba1178 (2020)

Photonic Organolead Halide Perovskite Artificial Synapse Capable of Accelerated Learning at Low Power Inspired by Dopamine-facilitated Synaptic Activity

S. Ham, S. Choi, H. Cho, S.-I. Na and G. Wang* 

Adv. Funct. Mater.  29, 1806646 (2019) 


Self-rectifying TaOy/Nanoporous TaOx Memristor Synaptic Array for Learning and Energy-efficient Neuromorphic Systems

S. Choi†, S. Jang†, J.-H. Moon, J. C. Kim, H. Y. Jeong, P. Jang, K.-J. Lee, and G. Wang*

NPG Asia Mater. 10, 1097–1106 (2018)


Synaptic barristor based on phase-engineered two-dimensional heterostructures
W. Huh†, S. Jang†, J. Y. Lee, D. Lee, D. Lee, J. M. Lee, H.-G. Park, J. C. Kim, H. Y. Jeong, G. Wang* and C.-H. Lee* 

Adv. Mater.  30, 1801447 (2018)


Controllable switching filaments prepared via tunable and well-defined single truncated conical nanopore structures for fast and scalable SiOx memory
S. Kwon, S. Jang, J.-W. Choi, S. Choi,  S.-J. Jang, T.-W. Kim* and G. Wang*
Nano Lett.  17, 7462–7470 (2017)


Three-Dimensional Networked Nanoporous Ta2O5-x Memory system for Ultrahigh Density Storage

G. Wang , J.-H. Lee , Y. Yang , G. Ruan , N. D. Kim , Y. Ji , and J. Tour*

Nano Lett. 5 (9), 6009-6014 (2015)


Nanoporous Silicon Oxide Memory

G. Wang, Y. Yang, J.-H. Lee, V. Abramova, H. Fei, G. Ruan, E. L. Thomas, and J. M. Tour *

Nano Lett.  14 (8), 4694–4699 (2014)


Conducting-Interlayer SiOx Memory Devices on Rigid and Flexible Substrates

G. Wang, A.-R. O. Raji, J.-H. Lee, and J. M. Tour*

ACS Nano,  1410–1418 (2014)

High-Performance and Low-Power Rewritable SiOx 1 kbit One Diode-One Resistor (1D-1R) Crossbar Memory Array

G. Wang, A. C. Lauchner, J. Lin, D. Natelson, K. V. Palem, and J. M. Tour *

Adv. Mater. 25 (34), 4789-4793 (2013)

[Molecular (Nano) Electronics ] (*corresponding)

Molecular van der Waals heterojunction photodiodes enabling dipole-induced polarity switching

J. Shin, S. Yang, J. S. Eo, T. Jeon, J. Lee, C.-H. Lee*, and G. Wang* 

Small Methods, 6, 2200646 (2022)

Advances of various heterogeneous structure types in molecular junction systems and their charge transport properties

J. Shin,  J. E. Eo, T. Jeon, T. Lee* and G. Wang*  

Adv. Sci. 9, 2202399 (2022) (*review article)

Tailoring the interfacial band offset by the molecular dipole orientation for a molecular heterojunction selector

J. S. Eo, J. Shin, S. Yang, T. Jeon, J. Lee, S. Choi, C.-H. Lee and G. Wang*

Adv. Sci. 2101390, (2021) 

Tunable rectification in a molecular heterojunction with two-dimensional semiconductors

J. Shin†, S. Yang†, Y. Jang, J. S. Eo, T.-W. Kim, T. Lee, C.-H. Lee*, and G. Wang*

Nature Comm. 11:1412 (2020)

Correlational Effects of the Molecular-Tilt Configuration and the Intermolecular van der Waals Interactions on the Charge Transport in the Molecular Junctions
J. Shin, K. Gu, S. Yang, C.-H. Lee, T. Lee, Y. H. Jang*, and G. Wang*
Nano Lett.  18, 7, 4322-4330 (2018)

Flexible Molecular-Scale Electronic Device

S. Park†, G. Wang†, B. Cho, Y. Kim, S. Song, Y. Ji, M. Yoon, and T. Lee*

Nature Nanotech. 7, 438-442 (2012). †Equally contribute. (selected image in the content)


Electrical Transport Characteristics Through Molecular Layers

 G. Wang, T.-W. Kim, T. Lee*

J. Mater. Chem.  21, 18117–18136 (2011) *Invited Review Article.


Investigation of the Transition Voltage Spectra of Molecular Junctions Considering Both Frontier Molecular Orbitals and Asymmetric Coupling Effect

G. Wang, Y. Kim, S.-I. Na, Y. H. Kahng, J. Ku, S. Park, Y. H. Jang, D.-Y. Kim, and T. Lee*

J. Phys. Chem. C,  115, 17979–17985 (2011)


New Approach for Molecular Electronic Junctions with Multi-Layer Graphene Electrode

G. Wang, Y. Kim, M. Choe, T.-W. Kim, T. Lee*

Adv. Mater. 23, 755-760 (2011)

Enhancement of Field Emission Transport by Molecular Tilt Configuration in Metal-Molecule-Metal Junction

G. Wang, T.-W. Kim, G. Jo, and T. Lee*

J. Am. Chem. Soc.  131, 5980-5985 (2009)


Effects of Metal-Molecule Contact and Molecular Structure on Molecular Electronic Conduction in Nonresonant Tunneling Regime: Alkyl versus Conjugated Molecules

G. Wang, T.-W. Kim, Y. H. Jang, and T. Lee*

J. Phys. Chem. C 112, 13010 (2008)

Influence of Metal-MoleculeContacts on Decay Coefficients and Specific Contact Resistances in Molecular Junctions

G. Wang, T.-W. Kim, H. Lee, and T. Lee*

Phys. Rev. B, 76, 205320 (2007)


Statistical Analysis of Electronic Properties of Alkanethiols in Metal-Molecule-Metal Junctions

T.-W. Kim, G. Wang, H. Lee, and T. Lee*

 Nanotechnology, 18, 315204 (2007) * citation > 110


bottom of page